1784

[8] W. H. Louisell, “Analysis of the single tapered mode coupler,”
Bell Syst. Tech. J.,vol. 34, pp. 853-870, July 1955.

[91 A.F. Milton and W. K. Burns, “Mode coupling in tapered optical

waveguide structures and electro-optic switches,” IEEE Trans.

Circuits Syst., vol. CAS-26, pp. 1020-1028, Dec. 1979.

S. C. Rashleigh and W. K. Burns, “Dual-input fiber-optic gyro-

scope,” Opt. Lett., vol. 5, pp. 482~-484, Nov. 1980.

The 3 X 3 gyroscope coupler of [1] has a maximum sensitivity

at KL = 40°,

[10]
[11]

William K. Burns, for a photograph and biography, see this issue, p.
1588. )

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 10, OCTOBER 1982

A.Fenner Milton was born in New York, NY,
on October 16, 1940. He received the B.A.
degree from Williams College, Williamstown,
MA, in 1962, and the M.A. and Ph.D. degrees in
applied physics, both from Harvard University,
Cambridge;, MA, in 1963 and 1968, respectively.

He was a technical staff member of the Sci-
ence and Technology Division, Institute for
Defense Analyses when he joined the staff of
the Naval Research Laboratory, Washington,
DC, as a Consultant to the Optical Sciences
In 1977 he became head of the Electro-Optical Technology

Division.
Branch. His research interests have included photoconductivity, photo
emission, nonlinear optics, integrated optics, and infrared focal plane
arrays.

Mode Size and Method for Estimating the Propagation
Constant of Single-Mode Ti:LiNbO3 Strip Waveguides

STEVEN K. KOROTKY, WILLIAM J. MINFORD, LAWRENCE L. BUHL, MANUEL D. DIVINOG,
AND ROD C. ALFERNESS

Abstract—We have formulated a model to calculate the mode size and
propagation constant of single-mode titanium-lithium niobate diffused
strip waveguides directly from controllable fabrication parameters and
basic constants. The model is compared to measurements of the lateral
and vertical mode width of Ti:LiNbO3 waveguides for a variety of dif-
fusion conditions. We show that the model accurately predicts the
geometrical mean mode size of the two-dimensional waveguide. The
model provides a simplified method for estimating the mode size and
propagation constant of the guide, and is useful in designing waveguide
devices having low fiber/waveguide coupling and bending losses.

I. INTRODUCTION

PTICAL waveguides produced by the in-diffusion of
Otitanium into lithium niobate crystals have been used to
fabricate many electrooptic and acoustooptic devices which
are potentially useful for communication and sensing applica-
tion [1]. The successful construction of some of these de-
vices, directional coupler wavelengths filters [2], for example,
depends critically on engineering the propagation constants of
the waveguides. For other applications, such as coupling to a
fiber [3], it is also necessary to control the size of the wave-
guide mode. For the most part, research devices based on
Ti:LiNbO; waveguides are developed through trial and error
iteration. As devices continue to become increasingly more
complex, the need for simple physical models for estimating
and relating the mode parameters of Ti:LiNbOj single-mode
strip waveguides becomes more acute.

In this paper, we present measured mode sizes for Ti:LiNbO;
waveguides as a function of several diffusion parameters. We
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also describe a model, based on the variational principle for
the propagation constant, which predicts the characteristics of
single-mode diffused strip waveguides in terms of controllable
diffusion parameters. The model accurately reproduces the
experimental geometrical mean mode size from fundamental
parameters, and also provides a simplified method for estimat-
ing the propagation constant of diffused strip waveguides.

II. EXPERIMENT
A. Waveguide Fabrication

The waveguides used in the experiments were fabricated on
z-cut, y-propagating LiNbO; crystals having an acoustic grade
polish. Waveguide patterns were produced using standard
photolithographic techniques. On one crystal, a set of 720 A
thick Ti strips ranging in width from 14 to 10 ym in 4 um
steps was evaporated. The metal was in-diffused for 6 h at
1100°C. On three other crystals, 6 um wide Ti strips were pre-
pared with thicknesses of 740, 850, and 1110 A. The diffu-
sion condition for these crystals was 1050°C for 6 h. In all
cases, the diffusion was carried out in an H,O rich atmosphere
to prevent surface guiding due to Li out-diffusion. The ends
of the waveguides were blocked and optically polished to
achieve flat end surfaces.

B. Mode Profile Measurements

Waveguide mode sizes (full width at half maximum power
intensity I') in the directions parallel to and perpendicular to
the crystal surface were measured for both TE and TM polar-
izations at the 1.32 um wavelength using an Nd-YAG laser.

One-dimensional cuts of the 2D-mode profile, which inter-
sect the peak power point, were obtained using a technique
similar to that used by Chen and Wang [4] to study mode con-
finement in semiconductor lasers. The near-field pattern was

0018-9480/82/1000-1784$00.75 © 1982 IEEE
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imaged onto an IR-sensitive camera placed approximately
1.5 m from the end of the waveguide. A magnification of ap-
proximately 375X was obtained by using a 4 mm focal length/
0.65 NA microscope objective located near the LiNbO; crys-
tal. The absolute magnification of the system was determined
to an accuracy of about 5 percent by magnifying the two out-
puts of an integrated directional coupler with calibrated center
to center waveguide separation at the ouput ports. The imag-
ing resolution set by diffraction from the lens aperture stop is
approximately 1 um.

The video signal from the camera tube was simultaneously
displayed on-a TV monitor and the CRT of a digital storage
oscilloscope; this combination facilitated critical focusing.
Measurements of the mode shape were recorded using the
oscilloscope. The digital feature significantly enhanced the
measurement accuracy since it permitted signal averaging to
reduce random tube noise to a negligible level, allowed sub-
traction of the black-level background—which is often not
constant across a TV scan line—to avoid systematic offset
errors, and eliminated the need to make measurements directly
from the CRT screen.

C. Experimental Results

The experimental values for the full width at half maximum
intensity parallel to (lateral) and perpendicular to (vertical)
the crystal surface and for the various diffusion parameters
are summarized in Figs. 1 and 2. The data are for the TM
polarization. The results for the TE mode are very similar
except the mode sizes are slightly larger, which is a result of
the smaller index difference produced for the same Ti con-
centration. In the single-mode region examined, the mode
sizes generally decrease with increasing initial metal strip width
W and metal thickness 7, when all other variables are held con-
stant, as a result of stronger optical confinement. If the strip
width is increased further, and the multimode region is ap-
proached, the size of the fundamental mode is expected to
pass through a minimum.

It is not possible to compare the relative mode confinement
or relative effective index for the waveguides of Fig. 1 to
those of Fig. 2, based solely on the experimental mode sizes,
because the parameters of the index distributions are quite
different for the two. In general, the propagation constant is
determined by the difference between two competing terms.
One term depends inversely on the square of the mode size.
The other term depends on the overlap of the field distribu-
tion with the index distribution. This is made clear below,
where we present a model for the waveguide parameters based
on the variational principle for the propagation constant. The
model predicts the mode sizes from fundamental parameters
and in turn relates the mode sizes to the effective index.

III. MobpEL
A. Theory

Approximations for the propagation constant of dielectric
waveguides having arbitrary index distributions can be ob-
tained using variational principles [5]-[7]. We apply the
variational method here to calculate the mode characteristics
for single-mode diffused strip waveguides.

The index difference used to produce single-mode wave-
guides via metal in-diffusion is small. Marcatili [8] has shown
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Fig. 1. Experimental Ti:LiNbO3 mode sizes I. The figure shows the
measured full width at half maximum intensity (I') in width (lateral)
and in depth (vertical) as a function of the initial metal strip width
(W) of the single-mode waveguide. The data are for fixed diffusion
temperature (T') and time (¢) and for fixed metal thickness (). Lines
passing through the data are merely to guide the eye.
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Fig. 2. Experimental Ti:LiNbO3 mode sizes II. Measured mode sizes
in the lateral and vertical directions are plotted as a function of metal
thickness for fixed metal strip width. The diffusion temperature and
time are also constant, but differ from the value in Fig. 1. Again,
the lines passing through the data are merely to guide the eye.

that, when the index of the guiding region of rectangular-type
waveguides differs only slightly from the bulk index, the sup-
ported modes are essentially TEM in nature. We assume,
therefore, that the major field components of the modes are
perpendicular to the direction of propagation, and are polar-
ized either perpendicular to (TM) or parallel to (TE) the
crystal surface. Because the index difference is small, the field
components satisfy the scalar wave equation [9]
22 9% o
VE = g€ FE

where ug is the free space permeability and e describes the
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permittivity of the structure. To be explicit, we consider the
propagation of a monochromatic wave of frequency cw travel-
ing along the y-axis and polarized paralle] to the z-axis. The
wave equation for E, (x,z) is

aZ
(5

where § is the propagation constant, and we have defined, as is
customary,

a2
' ?)Ez(x,z) +n2(x, 2) KB, (x, 2) = fE(x, 2)

eon?(x,2) = e(x, z),

and k* = pgeqw? , with € the free space permittivity.

Since the index distribution n(x, z) differs only slightly from
the bulk index, we write n(x, z) = ng + An(x, z). To an ac-
ceptable approximation, the index change produced by diffu-
sion is directly proportional to the metal concentration den-
sity for polarization along the extraordinary axis of LiNbO,
[10]. Also, if the diffusion is isotropic, the metal concentra-
tion density is separable [11]. Thus, we may write

An(x,z) = Angf(x) g(z)

where f and g are the concentration profiles and Ang is a
constant.

When the diffusion time is long compared to the time re-
quired to exhaust the source of metal, which is usually the
case, the function describing the diffusion distributions
are [11]

160 = | 73 3)

ol et

2
g(z)=exp- %(l%) .

Here W is the initial metal strip width and D is a diffusion
depth. The diffusion depth is expressed as D = (297)!/2 where
9 is the diffusion constant and ¢ is the diffusion time. The
temperature (7)) dependence of D is given by D =fDoe_T°/T
where T is a constant.

The constant Ang, which represents the peak index change,
is determined by requiring that the number of metal atoms
before and after diffusion be identical. Enforcing the con-
servation of atoms, one finds Ang = (dn/dc) - erf (W/24/2D) -
V2/n (r/D), where dn/dc is the change in index per unit change
in metal concentration. This expression is true for polarization
along the extraordinary. For polarization along the ordinary
crystal axis, An is not directly proportional to the metal con-
centration, and so the formalism developed is not strictly valid.
However, the direct relationship may be used as an approxima-
tion if (dn/dc) is interpreted as an effective constant. A value
for (dn/dc) representative of the region of the peak concentra-
tion erf [W/2+/2D] v/2/7 (/D) will serve as an estimate in this
case.

To apply the variational principle, an ansatz for the mode
profile is required. Taylor [7] has applied the variational
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method to diffused waveguides by expanding the mode pro-
files as a sum of products of parabolic cylinder functions and
retaining 21 terms. This large number precludes a direct phys-
ical correspondence between individual mode size parameters
and measurable spot sizes unless a single term dominates the
series, At present, however, we are interested only in the
properties of the fundamental mode. It has been found ex-
perimentally [12] that the shape of the fundamental mode of
diffused strip waveguides is to a good approximation Gaussian
in width and Hermite-Gaussian in depth. Therefore, as a
simplified form for the functional dependence of E, (x, z), we
consider a product solution £, (x, z) = ¥ (x) ¢(z) with normal-
ized profiles:

Vi (x) = . — exp - -l—(i)z
" Ve w12
and
)ew- 36
$a(z) = ——— \/_\/T ( xp-S\g

where d and w are the mode size parameters for depth and
width.,

Because the index distribution does not differ greatly from
np, the propagation constant will not vary substantially from
ngk. Introducing the effective index N with = Nk, we write
8= (ng + AN) k. The variational equation for the effective
index difference AN is then

d2w( ), d2¢(2)

2ng ANK? —fdx Yx) — 5 +dzdz) — 5

+ 2ngAnok? f dx V209 f@) - [ dz 67 2) 2@

which is obtained from the wave equation by left multiplying
by (Y¢)* and integrating over the x-z surface. We have also
made use of the hypothesis that n(x,z) >~ np.

When the trial solution is substituted into the above equa-
tion, and the integrations are carried out, we derive the follow-
ing relationship among AN, d, and w:

-9 4

2 AN = Y @Dy 2w WY

e (&) ) (5)
VG

X erf (1/5/(w/W)? + 8(D/W)?)
=Fd,w).

We now apply the variational principle by making use of the
fact that the propagation constant is stationary with respect to
variations in the eigenfunction solution; the true solution AN,
always satisfies 2ng AN;W?k> > F(d, w). Thus, the param-
eters d and w are determined by maximizing F(d, w) for given
diffusion conditions. In so doing, this model differs from the
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effective index method [11], [13], [14] in that the contribu-
tions to confinement from the orthogonal spatial directions
are handled simultaneously in the present case. Also, it is evi-
dent from the previous equation that the effective index differ-
ence is determined by the competition between two types of
terms. One type depends on the overlap of the normalized
mode distribution with the index distribution and is maxi-
mized for smaller mode sizes. The other type decreases as the
inverse of the square of the mode sizes and prevents the mode
from collapsing. Finally, we emphasize that the ultimate ac-
curacy of the values obtained for d and w depends on how
closely the form of the trial wave function resembles the true
solution.

B. Calculations

We have calculated normalized mode sizes and normalized
dispersion curves for the fundamental mode of diffused strip
waveguides using the model outlined above. The present
model has the advantage that the maximization of F can be
reduced to a one-dimensional problem by using either one of
the required relations: 8F/dw = 0 or 8F/od = 0. Using this
simplification, the maximization procedure was carried out
numerically. Fig. 3 shows the calculated normalized mode
sizes as a function of the dimensionless strength parameter
2ng(dnjdc) TWK® for various values of the D/W ratio. The

normalized mode sizes decrease with the increasing value of

the strength parameter, and approach a constant for large 7 or
W. In Fig. 4, we graph the corresponding normalized disper-
sion relations.

To compare the model with the experiment, we have used
it to calculate the expected mode sizes for the diffusion
conditions corresponding to the experiment. The value of
(dnfdc). = 0.625 (concentration in fraction of that of pure
Ti metal) for the extraordinary axis was taken from the
work of Minakata et al. [10]. The temperature coefficient
T, has been measured by Naitoh ef al. [15], and is approxi-
mately 3.03 X 10* K. Uncertainty in the value of D is
somewhat larger than those of the other fundamental param-
eters. We have found that a value of D, =2.3 X 1072 cm?/s
provides a good description of the present waveguides. This
value is close to the value of 1.4 X 10~2 cm?/s, which can be
extracted from the data for strip waveguides of Fukuma et al.
[16]. It is important to note that with the above assignment
of constants, there are no free parameters in the model.

In Fig. 5, we compare the model calculations, for the values
of the fundamental parameters stated above, to experiment
by considering the geometrical mean size of the mode, i.e.,
VI4I',,. Note that the full widths at half maximum intensity
Iy q are related to the model field parameters (w, d) by

w = 0.83w and Ty ~ 1.16d. Considering the simplifying
assumptions of the model, and that the diffusion depth for the
higher temperature is greater than 1.5 times larger than that of
the lower temperature, the agreement with the experiment is
remarkably good. The model does not do as well when trying
to reproduce the ratio of the mode sizes I'4/T'y,, as is seen in
Fig. 6. Calculated values are systematically larger by about 20
percent. This discrepancy may be attributable to the fact that
the model values represent an average over the entire two-
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Fig. 3. Normalized mode sizes. Calculated mode sizes in (a) width
w/W and (b) depth d/D are plotted as a function of the dimension-
less strength parameter 2npg(dn/dc) TWk*. This combination of
variables occurs naturally in the model (see text). The calculations
were cartied out for several values of the diffusion depth (D) to strip
width (W) ratio.

dimensional mode profile, whereas the experimental widths
were measured only for the peak power point, It is possible
that the actual mode size aspect ratio, when averaged over the
entire two-dimensional profile, is closer to unity than the pres-
ent measurements indicate. Alternatively, the observed mode
asymmetry may be a result of anisotropy in the diffusion pro-
cess, which is not incorporated in the present model. Mea-
surements of the full 2-D mode profiles are required to investi-
gate these possibilities.

Values for the effective index difference calculated for the
experimental diffusion conditions are plotted in Fig. 7 to illus-
trate the potential usefulness of the model in estimating AN,
The model indicates, for example, that the effective index dif-
ference for the smaller diffusion depth is increased by roughly
0.9 X 1073 for each 200 A increment in 7 above the initial
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Fig. 5. Geomeirical mean mode size. Model calculations for the geo-
metrical mean mode size \/T'qTy, are compared to the experimental
data of Figs. 1 and 2. The comparisons are made on the same graph
by using the dimensionless model variable 2ng(dn/dc) erz, which
is directly proportional to the product 7W, for the abscissa. The dif-
fusion depth for the larger temperature is approximately 1.5 times
greater than the diffusion depth for the lower temperature.

metal thickness of approximately 700 A required to establish
reasonable mode confinement. This is consistent with an in-
dependent analysis of recent bending loss measurements for
these waveguides [17].

IV. SuMMARY

We have made measurements of the mode sizes for single-
mode Ti:LiNbO; strip waveguides for a variety of diffusion
conditions. A model for the mode characteristics of these
waveguides has been formulated using the variational principle
for the propagation constant. The model relates the mode size
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surements for identical diffusion conditions. Note that the effective
index difference for the diffusion condition T = 1050°C,#=6h,r=
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to the effective index of the guide and to controllable diffu-
sion parameters. We have found that the model can accurately
reproduce the experimental values for the geometrical mean of
the mode sizes using values for basic constants consistent with
the literature. The model is potentially useful in designing
waveguide devices.
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